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PURPOSE OF TESTING: 

 

 Testing consumes atleast half of the time and work required to produce a functional 

program. 
 MYTH: Good programmers write code without bugs. (Its wrong!!!) 
 History says that even well written programs still have 1-3 bugs per hundred 

statements. 
 
Productivity and Quality in software: 

o In production of comsumer goods and other products, every 
manufacturing stage is subjected to quality control and testing from 
component to final stage. 

 
o If flaws are discovered at any stage, the product is either discarded or 

cycled back for rework and correction. 
o Productivity is measured by the sum of the costs of the material, the 

rework, and the discarded componenets, and the cost of quality 
assurance and testing. 

o There is a trade off between quality assurance costs and manufacturing 
costs: If sufficient time is not spent in quality assurance, the reject rate 
will be high and so will be the net cost. If inspection is good and all 
errors are caught as they occur, inspection costs will dominate, and 
again the net cost will suffer. 

o Testing and Quality assurance costs for 'manufactured' items can be as 
low as 2% in consumer products or as high as 80% in products such as 
space-ships, nuclear reactors, and aircrafts, where failures threaten life. 
Where as the manufacturing cost of a software is trivial. 

o The biggest part of software cost is the cost of bugs: the cost of 
detecting them, the cost of correcting them, the cost of designing tests 
that discover them, and the cost of running those tests. 

o For software, quality and productivity are indistinguishable because the 
cost of a software copy is trivial. 

 

Goals for testing: 
 

 Testing and Test Design are parts of quality assurance should also focus on bug 
prevention. A prevented bug is better than a detected and corrected bug. 
 

 Phases in a tester's mental life can be categorized into the following 5 phases: 

 

Phase 0: (Until 1956: Debugging Oriented)  

 

There is no difference between testing and debugging. Phase 0 thinking was the 

norm in early days of software development till testing emerged as a discipline. 

 

           Phase 1: (1957-1978: Demonstration Oriented)  

 

The purpose of testing   here is  to show that software works. Highlighted during 

the late 1970s. This failed because the probability of showing that software works 

'decreases' as testing increases. i.e. The more you test, the more likely you' ill 

find a bug. 
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  Phase 2: (1979-1982: Destruction Oriented)  

 

The purpose of testing is to show that software doesnt work. This also failed because the 

software will never get released as you will find one bug or the other. Also, a bug 

corrected may also lead to another bug. 

 

  Phase 3: (1983-1987: Evaluation Oriented)  

The purpose of testing is not to prove anything but to reduce the perceived risk of not 

working to an acceptable value (Statistical Quality Control). Notion is that testing does 

improve the product to the extent that testing catches bugs and to the extent that those 

bugs are fixed. The product is released when the confidence on that product is high 

enough. (Note: This is applied to large software products with millions of code and 

years of use.) 

 
Phase 4: (1988-2000: Prevention Oriented)  
 
Testability is the factor considered here. One reason is to reduce the labour of testing. Other 
reason is to check the testable and non-testable code. Testable code has fewer bugs than the 
code that's hard to test. Identifying the testing techniques to test the code is the main key 
here. 
 

 

 

Test Design:  

We know that the software code must be designed and tested, but many appear to be 

unaware that tests themselves must be designed and tested. Tests should be properly 

designed and tested before applying it to the acutal code. 

 

Testing is'nt everything: There are approaches other than testing to create better software. 
Methods other than testing include: 
 

0. Inspection Methods: Methods like walkthroughs, deskchecking, formal 

inspections and code reading appear to be as effective as testing but the 

bugs caught donot completely overlap. 

1. Design Style: While designing the software itself, adopting stylistic 

objectives such as testability, openness and clarity can do much to 

prevent bugs. 

2. Static Analysis Methods: Includes formal analysis of source code 

during compilation. In earlier days, it is a routine job of the programmer 

to do that. Now, the compilers have taken over that job. 

3. Languages: The source language can help reduce certain kinds of bugs. 

Programmers find new bugs while using new languages. 

4. Development Methodologies and Development Environment: The 

development process and the environment in which that methodology is 

embedded can prevent many kinds of bugs. 
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DICHOTOMIES: 

 

 Testing Versus Debugging: Many people consider both as same. Purpose of 

testing is to show that a program has bugs. The purpose of testing is to find the 

error or misconception that led to the program's failure and to design and 

implement the program changes that correct the error. 

 Debugging usually follows testing, but they differ as to goals, methods and most 

important psychology. The below tab le shows few important differences between 

testing and debugging. 

 

Testin

g 

Debuggin

g 

Testing starts with known 

conditions, uses predefined 

procedures and has predictable 

outcomes. 

Debugging starts from possibly unknown 

intial conditions and the end can not be 

predicted except statistically. 

Testing can and should be planned, 

designed and scheduled. 

Procedure and duration of debugging 

cannot be so constrained. 

Testing is a demonstration of 

error or apparent correctness. 
Debugging is a deductive process. 

Testing proves a programmer's failure. Debugging is the programmer's 

vindication (Justification). 

Testing, as executes, should 

strive to be predictable, dull, 

constrained, rigid and inhuman. 

Debugging demands intutive leaps, 

experimentation and freedom. 

Much testing can be done without 

design knowledge. 

Debugging is impossible without 

detailed design knowledge. 

Testing can often be done by an 

outsider. 

Debugging must be done by an insider. 

Much of test execution and design 

can be automated. 
Automated debugging is still a dream. 

 

 

 

 Function Versus Structure: Tests can be designed from a functional or a 

structural point of view. In functional testing, the program or system is treated as 

a blackbox. It is subjected to inputs, and its outputs are verified for conformance 

to specified behaviour. 
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Functional testing takes the user point of view- bother about functionality and 

features and not the program's implementation. Structural testing does look at the 

implementation details. Things such as programming style, control method, source 

language, database design, and coding details dominate structural testing. 

 Both Structural and functional tests are useful, both have limitations, and both 

target different kinds of bugs. Functional tets can detect all bugs but would take 
infinite time to do so. Structural tests are inherently finite but cannot detect all 

errors even if completely executed. 

 Designer Versus Tester: Test designer is the person who designs the tests where 

as the tester is the one actually tests the code. During functional testing, the 

designer and tester are probably different persons. During unit testing, the tester 

and the programmer merge into one person. 

 Tests designed and executed by the software designers are by nature biased 
towards structural consideration and therefore suffer the limitations of structural 
testing. 

 Modularity Versus Efficiency: A module is a discrete, well-defined, small 

component of  a system. Smaller the modules, difficult to integrate; larger the 

modules, difficult to understand. Both tests and systems can be modular. Testing 

can and should likewise be organised into modular components. Small, 

independent test cases can be designed to test independent modules. 

 Small Versus Large: Programming in large means constructing programs that 

consists of many components written by many different programmers. 

Programming in the small is what we do for ourselves in the privacy of our own 

offices. Qualitative and Quantitative changes occur with size and so must testing 

methods and quality criteria. 

 Builder Versus Buyer: Most software is written and used by the same 

organization. Unfortunately, this situation is dishonest because it clouds 

accountability. If there is no separation between builder and buyer, there can be no 

accountability. 
 The different roles / users in a system include: 

1. Builder: Who designs the system and is accountable to the buyer. 
2. Buyer: Who pays for the system in the hope of profits from providing 

services. 

3. User: Ultimate beneficiary or victim of the system. The user's interests 

are also guarded by. 
4. Tester: Who is dedicated to the builder's destruction. 
5. Operator: Who has to live with the builders' mistakes, the buyers' 

murky (unclear) specifications, testers' oversights and the users' 

complaints. 
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MODEL FOR TESTING: 

 

 

 

 

 

 
 

 

 

Figure 1.1: A Model for Testing 

 

Above figure is a model of testing process. It includes three models: A 

model of the environment, a model of the program and a model of the 

expected bugs. 

 
 ENVIRONMENT: 

o A Program's environment is the hardware and software required to make 
it run. For online systems, the environment may include communication 
lines, other systems, terminals and operators. 

o The environment also includes all programs that interact with and are 
used to create the program under test - such as OS, linkage editor, 
loader, compiler, utility routines. 

o Because the hardware and firmware are stable, it is not smart to blame 
the environment for bugs. 

 PROGRAM: 
o Most programs are too complicated to understand in detail. 
o The concept of the program is to be simplified inorder to test it. 
o If simple model of the program doesnot explain the unexpected 

behaviour, we may have to modify that model to include more facts and 
details. And if that fails, we may have to modify the program. 

 BUGS: 

o Bugs are more insidious (deceiving but harmful) than ever we expect 
them to be. 

o An unexpected test result may lead us to change our notion of what a 
bug is and our model of bugs. 

o Some optimistic notions that many programmers or testers have about 
bugs are usually unable to test effectively and unable to justify the dirty 
tests most programs need. 
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OPTIMISTIC NOTIONS ABOUT BUGS: 
 

1. Benign Bug Hypothesis: The belief that bugs are nice, tame and logical. 

(Benign: Not Dangerous) 

 

2. Bug Locality Hypothesis: The belief that a bug discovered with in a 

component effects only that component's behaviour. 

 

3. Control Bug Dominance: The belief that errors in the control structures (if, 

switch etc) of programs dominate the bugs. 

 

4. Code / Data Separation: The belief that bugs respect the separation of code 

and data. 

 

5. Lingua Salvator Est: The belief that the language syntax and semantics (e.g. 

Structured Coding, Strong typing, etc) eliminates most bugs. 

6. Corrections Abide: The mistaken belief that a corrected bug remains 

corrected. 

7. Silver Bullets: The mistaken belief that X (Language, Design method, 

representation, environment) grants immunity from bugs. 

8. Sadism Suffices: The common belief (especially by independent tester) that a 

sadistic streak, low cunning, and intuition are sufficient to eliminate most 

bugs. Tough bugs need methodology and techniques. 

9. Angelic Testers: The belief that testers are better at test design than 

programmers are at code design. 
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TESTS: 

 

o Tests are formal procedures, Inputs must be prepared, Outcomes should 
predicted, tests should be documented, commands need to be executed, 
and results are to be observed. All these errors are subjected to error 

o We do three distinct kinds of testing on a typical software system. 
They are: 

1. Unit / Component Testing: A Unit is the smallest testable 

piece  of software that can be compiled, assembled, linked, 

loaded etc. A unit is usually the work of one programmer and 

consists of several hundred or fewer lines of code. Unit 

Testing is the testing we do to show that the unit does not 

satisfy its functional specification or that its implementation 

structure does not match the intended design structure. A 

Component is an integrated aggregate of one or more 

units.Component Testing is the testing we do to show that 

the component does not satisfy its functional specification or 

that its implementation structure does not match the intended 

design structure. 

2. Integration Testing: Integration is the process by which 

components   are    aggregated    to    create    larger   

components. Integration Testing is testing done to show that  

even though the componenets were individually satisfactory 

(after passing component testing), checks the combination of 

components are incorrect or inconsistent. 

3. System Testing: A System is  a  big  component. System 

Testing is aimed at revealing bugs that cannot be attributed to 

components. It includes testing for performance, security, 

accountability, configuration sensitivity, startup and recovery. 

 

 

Role of Models: The art of testing consists of creating , selecting, exploring, and 

revising models. Our ability to go through this process depends on the number of 

different models we have at hand and their ability to express a program's 

behaviour. 

 
PLAYING POOL AND CONSULTING ORACLES 

o Testing is like playing a pool game. Either you hit the ball to any pocket 
(kiddie pool) or you specify the pocket in advance (real pool). So is the 
testing. There is kiddie testing and real testing. In kiddie testing, the 
observed outcome will  be considered as the expected outcome. In Real 
testing, the outcome is predicted and documented before the test is run. 

o The tester who cannot make that kind of predictions does not understand 
the program's functional objectives. 

o Oracles: An oracle is any program, process, or body of data that 
specifies the expected outcome of a set of tests as applied to a tested 
object. Example of oracle : Input/Outcome Oracle - an oracle that 
specifies the expected outcome for a specified input. 

o Sources of Oracles: If every test designer had to analyze and predict 
the expected behaviour for every test case for every component, then 
test design would be very expensive. The hardest part of test design is 
predicting the expected outcome, but we often have oracles that reduce 
the work. They are: 
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1. Kiddie Testing: run the test and see what comes out. If you 

have the outcome in front of you, and especially if you have 

the values of the internal variables, then it is much easier to 

validate that outcome by analysis and show it to be correct 

than it is to predict what the outcome should be and validate 

your prediction. 

2. Regression Test Suites: Today's software development and 

testing are dominated not by the design of new software but 

by rework and maintenance of existing software. In such 

instances, most of the tests you need will have been run on a 

previous versions. Most of those tests should have the same 

outcome for the new version. Outcome prediction is therefore 

needed only for changed parts of components. 

3. Purchased Suits and Oracles: Highly standardized software 

that differ only as to implementation often has commercially 

available test suites and oracles. The most common examples 

are compilers for standard languages. 

4. Existing Program: A working, trusted program is an 

excellent oracle. The typical use is when the program is being 

rehosted to a new language, operating system, environment, 

configuration with the intention that the behavior should not 

change as a result of the rehosting. 

 

 
IS COMPLETE TESTING POSSIBLE? 

o If the objective of the testing were to prove that a program is free of 
bugs, then testing not only would be practically impossible, but also 
would be theoretically impossible. 

o Three different approaches can be used to demonstrate that a 
program is correct.They are: 

1. Functional Testing: 

 Every program operates on a finite number of 

inputs. A complete functional test would consists 

of subjecting the program to all possible input 

streams. 

 For each input the routine either accepts the stream 

and produces a correct outcome, accepts the stream 

and produces an incorrect outcome, or rejects the 

stream and tells us that it did so. 

 For example, a 10 character input string has 280 
possible input streams and corresponding 

outcomes,  so complete functional testing in this 

sense is IMPRACTICAL. 

 But even theoritically, we can't execute a purely 

functional test this way because we don't know the 

length of the string to which the system is 

responding. 
2. Structural Testing: 

 The design should have enough tests to ensure that 

every path through the routine is exercised at least 

once. Right off that's is impossible because some 

loops might never terminate. 

 The number of paths through a small routine can be 

awesome because each loop multiplies the path 

count by the number of times through the loop. 
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 A small routine can have millions or billions of 
paths, so total Path Testing is usually 
IMPRACTICAL. 

3. Formal Proofs of Correctness: 

 Formal proofs of correctness rely on a combination 

of functional and structural concepts. 

 Requirements are stated in a formal language (e.g. 

Mathematics) and each program statement is 

examined and used in a step of an inductive proof 

that the routine will produce the correct outcome 

for all possible input sequences. 

 

 The IMPRACTICAL thing here is that such proofs 

are very expensive and have been applied only to 

numerical routines or to formal proofs for crucial 

software such as system’s security kernel or 

portions of compilers. 

o Each approach leads to the conclusion that complete testing, in the sense 
of a proof is neither theoretically nor practically possible. 

 

THEORITICAL BARRIERS OF COMPLETE TESTING: 
o "We can never be sure that the specifications are correct" 
o "No verification system can verify every correct program" 
o "We can never be certain that a verification system is correct" 

 Not only all known approaches to absoulte demonstrations of correctness 

impractical, but they are impossible. Therefore, our objective must shift from a 

absolute proof to a 'suitably convincing' demonstration. 



10 
 

 

 

THE TAXONOMY OF BUGS : 

 

 

CONSEQUENCES OF BUGS: 

 

 IMPORTANCE OF BUGS: The importance of bugs depends on frequency, 

correction cost, installation cost, and consequences. 

1. Frequency: How often does that kind of bug occur? Pay more attention 

to the more frequent bug types. 

2. Correction Cost: What does it cost to correct the bug after it is found? 

The cost is the sum of 2 factors: (1) the cost of discovery (2) the cost of 

correction. These costs go up dramatically later in the development 

cycle when the bug is discovered. Correction cost also depends on 

system size. 

3. Installation Cost: Installation cost depends on the number of 

installations: small for a single user program but more for distributed 

systems. Fixing one bug and distributing the fix could exceed the entire 

system's development cost. 

4. Consequences: What are the consequences of the bug? Bug 

consequences can range from mild to catastrophic. 

 

 

A reasonable metric for bug importance is 

 

Importance= ($) = Frequence * (Correction cost + Installation cost + 

Consequential cost) 

 

CONSEQUENCES OF BUGS: The consequences of a bug can be measure in 

terms of human rather than machine. Some consequences of a bug on a scale of 

one to ten are: 

1. Mild: The symptoms of the bug offend us aesthetically (gently); a 

misspelled output or a misaligned printout. 

2. Moderate: Outputs are misleading or redundant. The bug impacts the 

system's performance. 

3. Annoying: The  system's  behaviour  because  of  the  bug   is   

dehumanizing. E.g. Names are truncated orarbitarily modified. 

4. Disturbing: It refuses to handle legitimate (authorized / legal) 

transactions. The ATM wont give you money. My credit card is 

declared invalid. 

5. Serious: It loses track of its transactions. Not just the transaction itself 

but the fact that the transaction occurred. Accountability is lost. 

6. Very Serious: The bug causes the system to do the wrong transactions. 

Instead of losing your paycheck, the system credits it to another account 

or converts deposits to withdrawals. 

7. Extreme: The problems aren't limited to a few users or to few 

transaction types. They are frequent and arbitrary instead of sporadic 

infrequent) or for unusual cases. 

8. Intolerable: Long term unrecoverable corruption of the database occurs 

and the corruption is not easily discovered. Serious consideration is 

given to shutting the system down. 
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9. Catastrophic: The decision to shut down is taken out of our hands 

because the system fails. 

10. Infectious: What can be worse than a failed system? One that corrupt 

other systems even though it doesnot fall in itself ; that erodes the social 

physical environment; that melts nuclear reactors and starts war. 
 
FLEXIBLE SEVERITY RATHER THAN ABSOLUTES: 

o Quality can be measured as a combination of factors, of which number 
of bugs and their severity is only one component. 

o Many organizations have designed and used satisfactory, quantitative, 
quality metrics. 

o Because bugs and their symptoms play a significant role in such metrics, 
as testing progresses, you see the quality rise to a reasonable value 
which is deemed to be safe to ship the product. 

o The factors involved in bug severity are: 
1. Correction Cost: Not so important because catastrophic bugs  

may be corrected easier and small bugs may take major time 

to debug. 

2. Context and Application Dependency: Severity depends on 

the context and the application in which it is used. 

3. Creating Culture Dependency: Whats important depends 

on the creators of software and their cultural aspirations. Test 

tool vendors are more sensitive about bugs in their software 

then games software vendors. 

4. User Culture Dependency: Severity also depends on user 

culture. Naive users of PC software go crazy over bugs where 

as pros (experts) may just ignore. 

5. The software development phase: Severity depends on 

development phase. Any bugs gets more severe as it gets 

closer to field use and more severe the longer it has been 

around. 

 

 

TAXONOMY OF BUGS: 

 
 There is no universally correct way categorize bugs. The taxonomy is not rigid. 
 A given bug can be put into one or another category depending on its history and 

the programmer's state of mind. 

 The major categories are: (1) Requirements, Features and Functionality Bugs (2) 

Structural Bugs (3) Data Bugs (4) Coding Bugs (5) Interface, Integration and 

System Bugs 
(6) Test and Test Design Bugs. 
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 REQUIREMENTS, FEATURES AND FUNCTIONALITY BUGS: 
Various categories in Requirements, Features and Functionlity bugs 
include: 

 
1. Requirements and Specifications Bugs: 

 Requirements and specifications developed from 

them can be incomplete ambiguous, or self-

contradictory. They can be misunderstood or 

impossible to understand. 

 The specifications that don't have flaws in them 

may change while the design is in progress. The 

features are added, modified and deleted. 

 Requirements, especially, as expressed in 

specifications are a major source of expensive 

bugs. 

 The range is from a few percentage to more than 

50%, depending on the application and 

environment. 

 What hurts most about the bugs is that they are the 

earliest to invade the system and the last to leave. 

  
2. Feature Bugs: 

 
 

 Specification problems usually create 

corresponding feature problems. 

 A feature can be wrong, missing, or superfluous 

(serving no useful purpose). A missing feature or 

case is easier to detect and correct. A wrong feature 

could have deep design implications. 

 Removing the features might complicate the 

software, consume more resources, and foster more 

bugs. 
 

3. Feature Interaction Bugs: 
 Providing correct, clear, implementable and 

testable feature specifications is not enough. 

 Features usually come in groups or related 

features. The features of each group and the 

interaction of features with in the group are usually 

well tested. 

 The problem is unpredictable interactions between 

feature groups or even between individual features. 

For example, your telephone is provided with call 

holding and call forwarding. The interactions 

between these two features may have bugs. 

 Every application has its peculiar set of features 

and a much bigger set of unspecified feature 

interaction potentials and therefore result in feature 

interaction bugs. 
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4. Specification and Feature Bug Remedies: 

 

 Most feature bugs are rooted in human to human 

communication problems. One solution is to use high-level, 

formal specification languages or systems. 

 Such languages and systems provide short term support but in 

the long run, does not solve the problem. 

 Short term Support: Specification languages facilitate 

formalization of requirements and inconsistency and 

ambiguity analysis. 

 Long term Support: Assume that we have a great 

specification language and that can be used to create 

unambiguous, complete specifications with unambiguous 

complete testsand consistent test criteria. 

 The specification problem has been shifted to a higher level 

but not eliminated. 

 

5. Testing Techniques for functional bugs:  

 

Most functional test techniques- that is those techniques which 

are based on a behavioral description of software, such as 

transaction flow testing, syntax testing, domain testing, logic 

testing and state testing are useful in testing functional bugs. 

 
STRUCTURAL BUGS:  
 
Various categories in Structural bugs include: 
 
 

1.Control and Sequence Bugs: 

 Control and sequence bugs include paths left out, 

unreachable code, improper nesting of loops, loop-

back or loop termination criteria incorrect, missing 

process steps, duplicated processing, unnecessary 

processing, rampaging, GOTO's, ill-conceived (not 

properly planned) switches, sphagetti code, and 

worst of all, pachinko code. 

 

 One reason for control flow bugs is that this area is 

amenable (supportive) to theoritical treatment. 

 Most of the control flow bugs are easily tested and 

caught in unit testing. 

 Another reason for control flow bugs is that use of 

old code especially ALP & COBOL code are 

dominated by control flow bugs. 

 Control and sequence bugs at all levels are caught 

by testing, especially structural testing, more 

specifically path testing combined with a bottom 

line functional test based on a specification. 
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2. Logic Bugs: 

a. Bugs in logic, especially those related to 

misundertanding how case statements and logic 

operators behave singly and combinations 

b. Also includes evaluation of boolean 

expressions in deeply nested IF-THEN-ELSE 

constructs. 

c. If the bugs are parts of logical (i.e. boolean) 
processing not related to control flow, they are 

characterized as processing bugs. 

d. If the bugs are parts of a logical expression (i.e 

control- flow statement) which is used to direct 

the control flow, then they are categorized as 

control-flow bugs. 
3. Processing Bugs: 

a. Processing bugs include arithmetic bugs, 

algebraic, mathematical function evaluation, 

algorithm selection and general processing. 

b. Examples of Processing bugs include: Incorrect 
conversion from one data representation to 

other, ignoring overflow, improper use of 

grater-than-or-eual etc 

c. Although these bugs are frequent (12%), they 

tend to be caught in good unit testing. 
4. Initialization Bugs: 

a. Initialization bugs are common. Initialization 

bugs can be improper and superfluous. 

b. Superfluous bugs are generally less harmful but 

can affect performance. 

c. Typical initialization bugs include: Forgetting 

to initialize the variables before first use, 

assuming that they are initialized elsewhere, 
initializing to the wrong format, representation 

or type etc 

d. Explicit declaration of all variables, as in 

Pascal, can reduce some initialization 

problems. 
5. Data-Flow Bugs and Anomalies: 

a. Most initialization bugs are special case of data 

flow anamolies. 

b. A data flow anomaly occurs where there is a 

path along which we expect to do something 

unreasonable with data, such as using an 

uninitialized variable, attempting to use a 

variable before it exists, modifying and then  

not storing or using the result, or initializing 

twice without an intermediate use. 
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DATA BUGS: 

 

 Data bugs include all bugs that arise from the specification of 

data objects, their formats, the number of such objects, and 

their initial values. 

 

 Data Bugs are at least as common as bugs in code, but they 

are often treated as if they did not exist at all. 

 Code migrates data: Software is evolving towards programs 

in which more and more of the control and processing 

functions are stored in tables. 

 Because of this, there is an increasing awareness that bugs in 
code are only half the battle and the data problems should be 

given equal attention. 

 

 
 Dynamic Data Vs Static data: 

 Dynamic data are transitory. Whatever their 

purpose their lifetime is relatively short, typically 

the processing time of one transaction. A storage 

object may be used to hold dynamic data of 

different types, with different formats, attributes 

and residues. 

 Dynamic data bugs are due to leftover garbage in a 

shared resource. This can be handled in one of the 

three ways: (1) Clean up after the use by the user 

(2) Common Cleanup by the resource manager (3) 

No Clean up 

 Static Data are fixed in form and content. They 

appear in the source code or database directly or 

indirectly, for example a number, a string of 

characters, or a bit pattern. 

 Compile time processing will solve the bugs 

caused by static data. 
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Information, parameter, and control:  
Static or dynamic data can serve in one of three roles, or in combination of roles: as a 

parameter, for control, or for information. 

 

Content, Structure and Attributes:  
 Content can be an actual bit pattern, character string, or number put into a 

data structure. Content is a pure bit pattern and has no meaning unless it is 

interpreted by a hardware or software processor. All data bugs result    in     

the     corruption     or     misinterpretation     of content.  

 

 Structurerelates to the size, shape and numbers that describe the data object, 

that is memory location used to store the content. (e.g A two dimensional 

array). 

 

 Attributes relates to the specification meaning that is the semantics 

associated with the contents of a data object. (e.g. an integer, an alphanumeric 

string, a subroutine). The severity and subtlelty of bugs increases as we go 

from content to attributes because the things get less formal in that direction. 

 

 

 

CODING BUGS: 

 Coding errors of all kinds can create any of the other kind of bugs. 

 Syntax errors are generally not important in the scheme of 

things if the source language translator has adequate syntax 

checking. 

 If a program has many syntax errors, then we should expect 

many logic and coding bugs. 

 The documentation bugs are also considered as coding bugs 

which may mislead the maintenance programmers. 

 

 

INTERFACE, INTEGRATION, AND SYSTEM BUGS: 

 

                   Various categories of bugs in Interface, Integration, and System Bugs  

are: 
 

 
1.External Interfaces: 
 

 The external interfaces are the means used to communicate with the 

world. 

 These include devices, actuators, sensors, input terminals, printers, and 

communication lines. 

 The primary design criterion for an interface with outside world should 
be robustness. 

 All external interfaces, human or machine should employ a protocol. 

The protocol may be wrong or incorrectly implemented. 

 Other external interface bugs are: invalid timing or sequence 

assumptions related to external signals 

 Misunderstanding external input or output formats. 

 
 Insufficient tolerance to bad input data. 
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2. Internal Interfaces: 

 Internal interfaces are in principle not 
different from external interfaces but 

they are more controlled. 

 A best example for internal interfaces 

are communicating routines. 

 The external environment is fixed and 

the system must adapt to it but the 

internal environment, which consists of 

interfaces with other components, can be 

negotiated. 

 Internal interfaces have the same 

problem as external interfaces. 
3. Hardware Architecture: 

 Bugs related to hardware architecture 

originate mostly from misunderstanding 

how the hardware works. 

 Examples of hardware architecture bugs: 

address generation error, i/o device 

operation / instruction error, waiting too 

long for a response, incorrect interrupt 

handling etc. 

 The remedy for hardware architecture 

and interface problems is two fold: (1) 

Good Programming and Testing (2) 

Centralization of hardware interface 

software in programs written by 

hardware interface specialists. 
4. Operating System Bugs: 

 Program bugs related to the operating 

system are a combination of hardware 

architecture and interface bugs mostly 

caused by a misunderstanding of what it 

is the operating system does. 

 Use operating system interface 

specialists, and use explicit interface 

modules or macros for all operating 

system calls. 

 This approach may not eliminate the 

bugs but at least will localize them and 
make testing easier. 

5. Software Architecture: 

 Software architecture bugs are the kind 

that called - interactive. 

 Routines can pass unit and integration 

testing without revealing such bugs. 
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 Many of them depend on load, and their 

symptoms emerge only when the system 

is stressed. 

 Sample for such bugs: Assumption that 

there will be no interrupts, Failure to 

block or un block interrupts, 

Assumption that memory and registers 

were initialized or not initialized etc 

 Careful integration of modules and 

subjecting the final system to a stress 

test are effective methods for these bugs. 
6. Control and Sequence Bugs (Systems Level): 

 These bugs include: Ignored timing, 

Assuming that events occur in a 

specified sequence, Working on data 

before all the data have arrived from 

disc, Waiting for an impossible 

combination of prerequisites, Missing, 

wrong, redundant or superfluous process 

steps. 

 The remedy for these bugs is highly 

structured sequence control. 

 Specialize, internal, sequence control 

mechanisms are helpful. 
7. Resource Management Problems: 

 Memory is subdivided into dynamically 

allocated resources such as buffer 

blocks, queue blocks, task control 

blocks, and overlay buffers. 

 External mass storage units such as 
discs, are subdivided into memory 
resource pools. 

 Some resource management and usage 

bugs: Required resource not obtained, 

Wrong resource used, Resource is 

already in use, Resource dead lock etc 

 Resource Management Remedies: A 

design remedy that prevents bugs is 

always preferable to a test method that 

discovers them. 

 The design remedy in resource 

management is to keep the resource 

structure simple: the fewest different 

kinds of resources, the fewest pools, and 

no private resource management. 
8. Integration Bugs: 

 Integration bugs are bugs having to do 

with the integration of, and with the 

interfaces between, working and tested 

components. 

 These bugs results from inconsistencies 

or incompatibilities between 

components. 

 The communication methods include 
data structures, call sequences, registers, 
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semaphores, communication links and 
protocols results in integration bugs. 

 The integration bugs do not constitute a 

big bug category(9%) they are 

expensive category because they are 

usually caught late in the game and 

because they force changes in several 

components and/or data structures. 
9. System Bugs: 

 

 System bugs covering all kinds of bugs 

that cannot be ascribed to a component 

or to their simple interactions, but result 

from the totality of interactions between 

many components such as programs, 

data, hardware, and the operating 

systems. 

 There can be no meaningful system 

testing until there has been thorough 

component and integration testing. 

 System bugs are infrequent(1.7%) but 

very important because they are often 

found only after the system has been 

fielded. 

 

 

TEST AND TEST DESIGN BUGS: 

 Testing: testers have no immunity to bugs. Tests 

require complicated scenarios and databases. 

 They require code or the equivalent to execute and 

consequently they can have bugs. 

 Test criteria: if the specification is correct, it is 

correctly interpreted and implemented, and a 

proper test has been designed; but the criterion by 

which the software's behavior is judged may be 

incorrect or impossible. So, a proper test criteria 

has to be designed. The more complicated the 

criteria, the likelier they are to have bugs. 
 
 
 

Remedies: The remedies of test bugs are: 
 

1. Test Debugging: The first remedy for 

test bugs is testing and debugging the 

tests. Test debugging, when compared to  

program debugging, is easier because 

tests, when properly designed are 

simpler than programs and donot have to 

make concessions to efficiency. 
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2. Test Quality Assurance: Programmers 

have the right to ask how quality in 

independent testing is monitored. 

3. Test Execution Automation: The 

history of software bug removal and 

prevention is indistinguishable from the 

history of programming automation aids. 

Assemblers, loaders, compilers are 

developed to reduce the incidence of 

programming and operation errors. Test 

execution bugs are virtually eliminated 

by various test execution automation 

tools. 

4. Test Design Automation: Just as much 

of software development has been 

automated, much test design can be and 

has been automated. For a given 

productivity rate, automation reduces 

the bug count - be it for software or be it 

for tests. 

 

The Nightmare List and When to stop Testing : 

 

1.List your worst software nightmares. State them in terms of 

the symptoms they produce and see how your user will react 

to those symptoms.

2.Convert the consequences of each nightmare into a cost. 

Usually this is a labor cost for correcting the nightmare.

3.Order the list from the costliest to the cheapest and then 

discard the low-concern nightmares
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4.Based on your experience, measured
data and statistics postulate the bugs that
are likely to create the symptoms
expressed by each nightmare.

5.For each nightmare you’ve developed a
list of possible causative bugs, order that
list by decreasing probability.

6.Rank the bug types in order of
decreasing importance to you.

 

 

7.Design tests(based on your knowledge of test
techniques) and design your quality assurance
inspection process using the methods that are
most effective against the most important bugs

8.If a test is passed, then some nightmares or parts
of them go away. If test is failed, then nightmare is
possible, but upon correcting bug, it too goes away

9.Stop testing when probability of all nightmares
has been shown to be inconsequential

 


