
1

UNIT -1

PURPOSE OF TESTING:

 Testing consumes atleast half of the time and work required to produce a functional

program.
 MYTH: Good programmers write code without bugs. (Its wrong!!!)
 History says that even well written programs still have 1-3 bugs per hundred

statements.

Productivity and Quality in software:

o In production of comsumer goods and other products, every
manufacturing stage is subjected to quality control and testing from
component to final stage.

o If flaws are discovered at any stage, the product is either discarded or

cycled back for rework and correction.
o Productivity is measured by the sum of the costs of the material, the

rework, and the discarded componenets, and the cost of quality
assurance and testing.

o There is a trade off between quality assurance costs and manufacturing
costs: If sufficient time is not spent in quality assurance, the reject rate
will be high and so will be the net cost. If inspection is good and all
errors are caught as they occur, inspection costs will dominate, and
again the net cost will suffer.

o Testing and Quality assurance costs for 'manufactured' items can be as
low as 2% in consumer products or as high as 80% in products such as
space-ships, nuclear reactors, and aircrafts, where failures threaten life.
Where as the manufacturing cost of a software is trivial.

o The biggest part of software cost is the cost of bugs: the cost of
detecting them, the cost of correcting them, the cost of designing tests
that discover them, and the cost of running those tests.

o For software, quality and productivity are indistinguishable because the
cost of a software copy is trivial.

Goals for testing:

 Testing and Test Design are parts of quality assurance should also focus on bug
prevention. A prevented bug is better than a detected and corrected bug.

 Phases in a tester's mental life can be categorized into the following 5 phases:

Phase 0: (Until 1956: Debugging Oriented)

There is no difference between testing and debugging. Phase 0 thinking was the

norm in early days of software development till testing emerged as a discipline.

 Phase 1: (1957-1978: Demonstration Oriented)

The purpose of testing here is to show that software works. Highlighted during

the late 1970s. This failed because the probability of showing that software works

'decreases' as testing increases. i.e. The more you test, the more likely you' ill

find a bug.

2

 Phase 2: (1979-1982: Destruction Oriented)

The purpose of testing is to show that software doesnt work. This also failed because the

software will never get released as you will find one bug or the other. Also, a bug

corrected may also lead to another bug.

 Phase 3: (1983-1987: Evaluation Oriented)

The purpose of testing is not to prove anything but to reduce the perceived risk of not

working to an acceptable value (Statistical Quality Control). Notion is that testing does

improve the product to the extent that testing catches bugs and to the extent that those

bugs are fixed. The product is released when the confidence on that product is high

enough. (Note: This is applied to large software products with millions of code and

years of use.)

Phase 4: (1988-2000: Prevention Oriented)

Testability is the factor considered here. One reason is to reduce the labour of testing. Other
reason is to check the testable and non-testable code. Testable code has fewer bugs than the
code that's hard to test. Identifying the testing techniques to test the code is the main key
here.

Test Design:

We know that the software code must be designed and tested, but many appear to be

unaware that tests themselves must be designed and tested. Tests should be properly

designed and tested before applying it to the acutal code.

Testing is'nt everything: There are approaches other than testing to create better software.
Methods other than testing include:

0. Inspection Methods: Methods like walkthroughs, deskchecking, formal

inspections and code reading appear to be as effective as testing but the

bugs caught donot completely overlap.

1. Design Style: While designing the software itself, adopting stylistic

objectives such as testability, openness and clarity can do much to

prevent bugs.

2. Static Analysis Methods: Includes formal analysis of source code

during compilation. In earlier days, it is a routine job of the programmer

to do that. Now, the compilers have taken over that job.

3. Languages: The source language can help reduce certain kinds of bugs.

Programmers find new bugs while using new languages.

4. Development Methodologies and Development Environment: The

development process and the environment in which that methodology is

embedded can prevent many kinds of bugs.

3

DICHOTOMIES:

 Testing Versus Debugging: Many people consider both as same. Purpose of

testing is to show that a program has bugs. The purpose of testing is to find the

error or misconception that led to the program's failure and to design and

implement the program changes that correct the error.

 Debugging usually follows testing, but they differ as to goals, methods and most

important psychology. The below tab le shows few important differences between

testing and debugging.

Testin

g

Debuggin

g

Testing starts with known

conditions, uses predefined

procedures and has predictable

outcomes.

Debugging starts from possibly unknown

intial conditions and the end can not be

predicted except statistically.

Testing can and should be planned,

designed and scheduled.

Procedure and duration of debugging

cannot be so constrained.

Testing is a demonstration of

error or apparent correctness.
Debugging is a deductive process.

Testing proves a programmer's failure. Debugging is the programmer's

vindication (Justification).

Testing, as executes, should

strive to be predictable, dull,

constrained, rigid and inhuman.

Debugging demands intutive leaps,

experimentation and freedom.

Much testing can be done without

design knowledge.

Debugging is impossible without

detailed design knowledge.

Testing can often be done by an

outsider.

Debugging must be done by an insider.

Much of test execution and design

can be automated.
Automated debugging is still a dream.

 Function Versus Structure: Tests can be designed from a functional or a

structural point of view. In functional testing, the program or system is treated as

a blackbox. It is subjected to inputs, and its outputs are verified for conformance

to specified behaviour.

4

Functional testing takes the user point of view- bother about functionality and

features and not the program's implementation. Structural testing does look at the

implementation details. Things such as programming style, control method, source

language, database design, and coding details dominate structural testing.

 Both Structural and functional tests are useful, both have limitations, and both

target different kinds of bugs. Functional tets can detect all bugs but would take
infinite time to do so. Structural tests are inherently finite but cannot detect all

errors even if completely executed.

 Designer Versus Tester: Test designer is the person who designs the tests where

as the tester is the one actually tests the code. During functional testing, the

designer and tester are probably different persons. During unit testing, the tester

and the programmer merge into one person.

 Tests designed and executed by the software designers are by nature biased
towards structural consideration and therefore suffer the limitations of structural
testing.

 Modularity Versus Efficiency: A module is a discrete, well-defined, small

component of a system. Smaller the modules, difficult to integrate; larger the

modules, difficult to understand. Both tests and systems can be modular. Testing

can and should likewise be organised into modular components. Small,

independent test cases can be designed to test independent modules.

 Small Versus Large: Programming in large means constructing programs that

consists of many components written by many different programmers.

Programming in the small is what we do for ourselves in the privacy of our own

offices. Qualitative and Quantitative changes occur with size and so must testing

methods and quality criteria.

 Builder Versus Buyer: Most software is written and used by the same

organization. Unfortunately, this situation is dishonest because it clouds

accountability. If there is no separation between builder and buyer, there can be no

accountability.
 The different roles / users in a system include:

1. Builder: Who designs the system and is accountable to the buyer.
2. Buyer: Who pays for the system in the hope of profits from providing

services.

3. User: Ultimate beneficiary or victim of the system. The user's interests

are also guarded by.
4. Tester: Who is dedicated to the builder's destruction.
5. Operator: Who has to live with the builders' mistakes, the buyers'

murky (unclear) specifications, testers' oversights and the users'

complaints.

5

MODEL FOR TESTING:

Figure 1.1: A Model for Testing

Above figure is a model of testing process. It includes three models: A

model of the environment, a model of the program and a model of the

expected bugs.

 ENVIRONMENT:

o A Program's environment is the hardware and software required to make
it run. For online systems, the environment may include communication
lines, other systems, terminals and operators.

o The environment also includes all programs that interact with and are
used to create the program under test - such as OS, linkage editor,
loader, compiler, utility routines.

o Because the hardware and firmware are stable, it is not smart to blame
the environment for bugs.

 PROGRAM:
o Most programs are too complicated to understand in detail.
o The concept of the program is to be simplified inorder to test it.
o If simple model of the program doesnot explain the unexpected

behaviour, we may have to modify that model to include more facts and
details. And if that fails, we may have to modify the program.

 BUGS:

o Bugs are more insidious (deceiving but harmful) than ever we expect
them to be.

o An unexpected test result may lead us to change our notion of what a
bug is and our model of bugs.

o Some optimistic notions that many programmers or testers have about
bugs are usually unable to test effectively and unable to justify the dirty
tests most programs need.

6

OPTIMISTIC NOTIONS ABOUT BUGS:

1. Benign Bug Hypothesis: The belief that bugs are nice, tame and logical.

(Benign: Not Dangerous)

2. Bug Locality Hypothesis: The belief that a bug discovered with in a

component effects only that component's behaviour.

3. Control Bug Dominance: The belief that errors in the control structures (if,

switch etc) of programs dominate the bugs.

4. Code / Data Separation: The belief that bugs respect the separation of code

and data.

5. Lingua Salvator Est: The belief that the language syntax and semantics (e.g.

Structured Coding, Strong typing, etc) eliminates most bugs.

6. Corrections Abide: The mistaken belief that a corrected bug remains

corrected.

7. Silver Bullets: The mistaken belief that X (Language, Design method,

representation, environment) grants immunity from bugs.

8. Sadism Suffices: The common belief (especially by independent tester) that a

sadistic streak, low cunning, and intuition are sufficient to eliminate most

bugs. Tough bugs need methodology and techniques.

9. Angelic Testers: The belief that testers are better at test design than

programmers are at code design.

7

TESTS:

o Tests are formal procedures, Inputs must be prepared, Outcomes should
predicted, tests should be documented, commands need to be executed,
and results are to be observed. All these errors are subjected to error

o We do three distinct kinds of testing on a typical software system.
They are:

1. Unit / Component Testing: A Unit is the smallest testable

piece of software that can be compiled, assembled, linked,

loaded etc. A unit is usually the work of one programmer and

consists of several hundred or fewer lines of code. Unit

Testing is the testing we do to show that the unit does not

satisfy its functional specification or that its implementation

structure does not match the intended design structure. A

Component is an integrated aggregate of one or more

units.Component Testing is the testing we do to show that

the component does not satisfy its functional specification or

that its implementation structure does not match the intended

design structure.

2. Integration Testing: Integration is the process by which

components are aggregated to create larger

components. Integration Testing is testing done to show that

even though the componenets were individually satisfactory

(after passing component testing), checks the combination of

components are incorrect or inconsistent.

3. System Testing: A System is a big component. System

Testing is aimed at revealing bugs that cannot be attributed to

components. It includes testing for performance, security,

accountability, configuration sensitivity, startup and recovery.

Role of Models: The art of testing consists of creating , selecting, exploring, and

revising models. Our ability to go through this process depends on the number of

different models we have at hand and their ability to express a program's

behaviour.

PLAYING POOL AND CONSULTING ORACLES

o Testing is like playing a pool game. Either you hit the ball to any pocket
(kiddie pool) or you specify the pocket in advance (real pool). So is the
testing. There is kiddie testing and real testing. In kiddie testing, the
observed outcome will be considered as the expected outcome. In Real
testing, the outcome is predicted and documented before the test is run.

o The tester who cannot make that kind of predictions does not understand
the program's functional objectives.

o Oracles: An oracle is any program, process, or body of data that
specifies the expected outcome of a set of tests as applied to a tested
object. Example of oracle : Input/Outcome Oracle - an oracle that
specifies the expected outcome for a specified input.

o Sources of Oracles: If every test designer had to analyze and predict
the expected behaviour for every test case for every component, then
test design would be very expensive. The hardest part of test design is
predicting the expected outcome, but we often have oracles that reduce
the work. They are:

8

1. Kiddie Testing: run the test and see what comes out. If you

have the outcome in front of you, and especially if you have

the values of the internal variables, then it is much easier to

validate that outcome by analysis and show it to be correct

than it is to predict what the outcome should be and validate

your prediction.

2. Regression Test Suites: Today's software development and

testing are dominated not by the design of new software but

by rework and maintenance of existing software. In such

instances, most of the tests you need will have been run on a

previous versions. Most of those tests should have the same

outcome for the new version. Outcome prediction is therefore

needed only for changed parts of components.

3. Purchased Suits and Oracles: Highly standardized software

that differ only as to implementation often has commercially

available test suites and oracles. The most common examples

are compilers for standard languages.

4. Existing Program: A working, trusted program is an

excellent oracle. The typical use is when the program is being

rehosted to a new language, operating system, environment,

configuration with the intention that the behavior should not

change as a result of the rehosting.

IS COMPLETE TESTING POSSIBLE?

o If the objective of the testing were to prove that a program is free of
bugs, then testing not only would be practically impossible, but also
would be theoretically impossible.

o Three different approaches can be used to demonstrate that a
program is correct.They are:

1. Functional Testing:

 Every program operates on a finite number of

inputs. A complete functional test would consists

of subjecting the program to all possible input

streams.

 For each input the routine either accepts the stream

and produces a correct outcome, accepts the stream

and produces an incorrect outcome, or rejects the

stream and tells us that it did so.

 For example, a 10 character input string has 280
possible input streams and corresponding

outcomes, so complete functional testing in this

sense is IMPRACTICAL.

 But even theoritically, we can't execute a purely

functional test this way because we don't know the

length of the string to which the system is

responding.
2. Structural Testing:

 The design should have enough tests to ensure that

every path through the routine is exercised at least

once. Right off that's is impossible because some

loops might never terminate.

 The number of paths through a small routine can be

awesome because each loop multiplies the path

count by the number of times through the loop.

9

 A small routine can have millions or billions of
paths, so total Path Testing is usually
IMPRACTICAL.

3. Formal Proofs of Correctness:

 Formal proofs of correctness rely on a combination

of functional and structural concepts.

 Requirements are stated in a formal language (e.g.

Mathematics) and each program statement is

examined and used in a step of an inductive proof

that the routine will produce the correct outcome

for all possible input sequences.

 The IMPRACTICAL thing here is that such proofs

are very expensive and have been applied only to

numerical routines or to formal proofs for crucial

software such as system’s security kernel or

portions of compilers.

o Each approach leads to the conclusion that complete testing, in the sense
of a proof is neither theoretically nor practically possible.

THEORITICAL BARRIERS OF COMPLETE TESTING:
o "We can never be sure that the specifications are correct"
o "No verification system can verify every correct program"
o "We can never be certain that a verification system is correct"

 Not only all known approaches to absoulte demonstrations of correctness

impractical, but they are impossible. Therefore, our objective must shift from a

absolute proof to a 'suitably convincing' demonstration.

10

THE TAXONOMY OF BUGS :

CONSEQUENCES OF BUGS:

 IMPORTANCE OF BUGS: The importance of bugs depends on frequency,

correction cost, installation cost, and consequences.

1. Frequency: How often does that kind of bug occur? Pay more attention

to the more frequent bug types.

2. Correction Cost: What does it cost to correct the bug after it is found?

The cost is the sum of 2 factors: (1) the cost of discovery (2) the cost of

correction. These costs go up dramatically later in the development

cycle when the bug is discovered. Correction cost also depends on

system size.

3. Installation Cost: Installation cost depends on the number of

installations: small for a single user program but more for distributed

systems. Fixing one bug and distributing the fix could exceed the entire

system's development cost.

4. Consequences: What are the consequences of the bug? Bug

consequences can range from mild to catastrophic.

A reasonable metric for bug importance is

Importance= ($) = Frequence * (Correction cost + Installation cost +

Consequential cost)

CONSEQUENCES OF BUGS: The consequences of a bug can be measure in

terms of human rather than machine. Some consequences of a bug on a scale of

one to ten are:

1. Mild: The symptoms of the bug offend us aesthetically (gently); a

misspelled output or a misaligned printout.

2. Moderate: Outputs are misleading or redundant. The bug impacts the

system's performance.

3. Annoying: The system's behaviour because of the bug is

dehumanizing. E.g. Names are truncated orarbitarily modified.

4. Disturbing: It refuses to handle legitimate (authorized / legal)

transactions. The ATM wont give you money. My credit card is

declared invalid.

5. Serious: It loses track of its transactions. Not just the transaction itself

but the fact that the transaction occurred. Accountability is lost.

6. Very Serious: The bug causes the system to do the wrong transactions.

Instead of losing your paycheck, the system credits it to another account

or converts deposits to withdrawals.

7. Extreme: The problems aren't limited to a few users or to few

transaction types. They are frequent and arbitrary instead of sporadic

infrequent) or for unusual cases.

8. Intolerable: Long term unrecoverable corruption of the database occurs

and the corruption is not easily discovered. Serious consideration is

given to shutting the system down.

11

9. Catastrophic: The decision to shut down is taken out of our hands

because the system fails.

10. Infectious: What can be worse than a failed system? One that corrupt

other systems even though it doesnot fall in itself ; that erodes the social

physical environment; that melts nuclear reactors and starts war.

FLEXIBLE SEVERITY RATHER THAN ABSOLUTES:

o Quality can be measured as a combination of factors, of which number
of bugs and their severity is only one component.

o Many organizations have designed and used satisfactory, quantitative,
quality metrics.

o Because bugs and their symptoms play a significant role in such metrics,
as testing progresses, you see the quality rise to a reasonable value
which is deemed to be safe to ship the product.

o The factors involved in bug severity are:
1. Correction Cost: Not so important because catastrophic bugs

may be corrected easier and small bugs may take major time

to debug.

2. Context and Application Dependency: Severity depends on

the context and the application in which it is used.

3. Creating Culture Dependency: Whats important depends

on the creators of software and their cultural aspirations. Test

tool vendors are more sensitive about bugs in their software

then games software vendors.

4. User Culture Dependency: Severity also depends on user

culture. Naive users of PC software go crazy over bugs where

as pros (experts) may just ignore.

5. The software development phase: Severity depends on

development phase. Any bugs gets more severe as it gets

closer to field use and more severe the longer it has been

around.

TAXONOMY OF BUGS:

 There is no universally correct way categorize bugs. The taxonomy is not rigid.
 A given bug can be put into one or another category depending on its history and

the programmer's state of mind.

 The major categories are: (1) Requirements, Features and Functionality Bugs (2)

Structural Bugs (3) Data Bugs (4) Coding Bugs (5) Interface, Integration and

System Bugs
(6) Test and Test Design Bugs.

12

 REQUIREMENTS, FEATURES AND FUNCTIONALITY BUGS:
Various categories in Requirements, Features and Functionlity bugs
include:

1. Requirements and Specifications Bugs:

 Requirements and specifications developed from

them can be incomplete ambiguous, or self-

contradictory. They can be misunderstood or

impossible to understand.

 The specifications that don't have flaws in them

may change while the design is in progress. The

features are added, modified and deleted.

 Requirements, especially, as expressed in

specifications are a major source of expensive

bugs.

 The range is from a few percentage to more than

50%, depending on the application and

environment.

 What hurts most about the bugs is that they are the

earliest to invade the system and the last to leave.

2. Feature Bugs:

 Specification problems usually create

corresponding feature problems.

 A feature can be wrong, missing, or superfluous

(serving no useful purpose). A missing feature or

case is easier to detect and correct. A wrong feature

could have deep design implications.

 Removing the features might complicate the

software, consume more resources, and foster more

bugs.

3. Feature Interaction Bugs:
 Providing correct, clear, implementable and

testable feature specifications is not enough.

 Features usually come in groups or related

features. The features of each group and the

interaction of features with in the group are usually

well tested.

 The problem is unpredictable interactions between

feature groups or even between individual features.

For example, your telephone is provided with call

holding and call forwarding. The interactions

between these two features may have bugs.

 Every application has its peculiar set of features

and a much bigger set of unspecified feature

interaction potentials and therefore result in feature

interaction bugs.

13

4. Specification and Feature Bug Remedies:

 Most feature bugs are rooted in human to human

communication problems. One solution is to use high-level,

formal specification languages or systems.

 Such languages and systems provide short term support but in

the long run, does not solve the problem.

 Short term Support: Specification languages facilitate

formalization of requirements and inconsistency and

ambiguity analysis.

 Long term Support: Assume that we have a great

specification language and that can be used to create

unambiguous, complete specifications with unambiguous

complete testsand consistent test criteria.

 The specification problem has been shifted to a higher level

but not eliminated.

5. Testing Techniques for functional bugs:

Most functional test techniques- that is those techniques which

are based on a behavioral description of software, such as

transaction flow testing, syntax testing, domain testing, logic

testing and state testing are useful in testing functional bugs.

STRUCTURAL BUGS:

Various categories in Structural bugs include:

1.Control and Sequence Bugs:

 Control and sequence bugs include paths left out,

unreachable code, improper nesting of loops, loop-

back or loop termination criteria incorrect, missing

process steps, duplicated processing, unnecessary

processing, rampaging, GOTO's, ill-conceived (not

properly planned) switches, sphagetti code, and

worst of all, pachinko code.

 One reason for control flow bugs is that this area is

amenable (supportive) to theoritical treatment.

 Most of the control flow bugs are easily tested and

caught in unit testing.

 Another reason for control flow bugs is that use of

old code especially ALP & COBOL code are

dominated by control flow bugs.

 Control and sequence bugs at all levels are caught

by testing, especially structural testing, more

specifically path testing combined with a bottom

line functional test based on a specification.

14

2. Logic Bugs:

a. Bugs in logic, especially those related to

misundertanding how case statements and logic

operators behave singly and combinations

b. Also includes evaluation of boolean

expressions in deeply nested IF-THEN-ELSE

constructs.

c. If the bugs are parts of logical (i.e. boolean)
processing not related to control flow, they are

characterized as processing bugs.

d. If the bugs are parts of a logical expression (i.e

control- flow statement) which is used to direct

the control flow, then they are categorized as

control-flow bugs.
3. Processing Bugs:

a. Processing bugs include arithmetic bugs,

algebraic, mathematical function evaluation,

algorithm selection and general processing.

b. Examples of Processing bugs include: Incorrect
conversion from one data representation to

other, ignoring overflow, improper use of

grater-than-or-eual etc

c. Although these bugs are frequent (12%), they

tend to be caught in good unit testing.
4. Initialization Bugs:

a. Initialization bugs are common. Initialization

bugs can be improper and superfluous.

b. Superfluous bugs are generally less harmful but

can affect performance.

c. Typical initialization bugs include: Forgetting

to initialize the variables before first use,

assuming that they are initialized elsewhere,
initializing to the wrong format, representation

or type etc

d. Explicit declaration of all variables, as in

Pascal, can reduce some initialization

problems.
5. Data-Flow Bugs and Anomalies:

a. Most initialization bugs are special case of data

flow anamolies.

b. A data flow anomaly occurs where there is a

path along which we expect to do something

unreasonable with data, such as using an

uninitialized variable, attempting to use a

variable before it exists, modifying and then

not storing or using the result, or initializing

twice without an intermediate use.

15

DATA BUGS:

 Data bugs include all bugs that arise from the specification of

data objects, their formats, the number of such objects, and

their initial values.

 Data Bugs are at least as common as bugs in code, but they

are often treated as if they did not exist at all.

 Code migrates data: Software is evolving towards programs

in which more and more of the control and processing

functions are stored in tables.

 Because of this, there is an increasing awareness that bugs in
code are only half the battle and the data problems should be

given equal attention.

 Dynamic Data Vs Static data:

 Dynamic data are transitory. Whatever their

purpose their lifetime is relatively short, typically

the processing time of one transaction. A storage

object may be used to hold dynamic data of

different types, with different formats, attributes

and residues.

 Dynamic data bugs are due to leftover garbage in a

shared resource. This can be handled in one of the

three ways: (1) Clean up after the use by the user

(2) Common Cleanup by the resource manager (3)

No Clean up

 Static Data are fixed in form and content. They

appear in the source code or database directly or

indirectly, for example a number, a string of

characters, or a bit pattern.

 Compile time processing will solve the bugs

caused by static data.

16

Information, parameter, and control:
Static or dynamic data can serve in one of three roles, or in combination of roles: as a

parameter, for control, or for information.

Content, Structure and Attributes:
 Content can be an actual bit pattern, character string, or number put into a

data structure. Content is a pure bit pattern and has no meaning unless it is

interpreted by a hardware or software processor. All data bugs result in

the corruption or misinterpretation of content.

 Structurerelates to the size, shape and numbers that describe the data object,

that is memory location used to store the content. (e.g A two dimensional

array).

 Attributes relates to the specification meaning that is the semantics

associated with the contents of a data object. (e.g. an integer, an alphanumeric

string, a subroutine). The severity and subtlelty of bugs increases as we go

from content to attributes because the things get less formal in that direction.

CODING BUGS:

 Coding errors of all kinds can create any of the other kind of bugs.

 Syntax errors are generally not important in the scheme of

things if the source language translator has adequate syntax

checking.

 If a program has many syntax errors, then we should expect

many logic and coding bugs.

 The documentation bugs are also considered as coding bugs

which may mislead the maintenance programmers.

INTERFACE, INTEGRATION, AND SYSTEM BUGS:

 Various categories of bugs in Interface, Integration, and System Bugs

are:

1.External Interfaces:

 The external interfaces are the means used to communicate with the

world.

 These include devices, actuators, sensors, input terminals, printers, and

communication lines.

 The primary design criterion for an interface with outside world should
be robustness.

 All external interfaces, human or machine should employ a protocol.

The protocol may be wrong or incorrectly implemented.

 Other external interface bugs are: invalid timing or sequence

assumptions related to external signals

 Misunderstanding external input or output formats.

 Insufficient tolerance to bad input data.

17

2. Internal Interfaces:

 Internal interfaces are in principle not
different from external interfaces but

they are more controlled.

 A best example for internal interfaces

are communicating routines.

 The external environment is fixed and

the system must adapt to it but the

internal environment, which consists of

interfaces with other components, can be

negotiated.

 Internal interfaces have the same

problem as external interfaces.
3. Hardware Architecture:

 Bugs related to hardware architecture

originate mostly from misunderstanding

how the hardware works.

 Examples of hardware architecture bugs:

address generation error, i/o device

operation / instruction error, waiting too

long for a response, incorrect interrupt

handling etc.

 The remedy for hardware architecture

and interface problems is two fold: (1)

Good Programming and Testing (2)

Centralization of hardware interface

software in programs written by

hardware interface specialists.
4. Operating System Bugs:

 Program bugs related to the operating

system are a combination of hardware

architecture and interface bugs mostly

caused by a misunderstanding of what it

is the operating system does.

 Use operating system interface

specialists, and use explicit interface

modules or macros for all operating

system calls.

 This approach may not eliminate the

bugs but at least will localize them and
make testing easier.

5. Software Architecture:

 Software architecture bugs are the kind

that called - interactive.

 Routines can pass unit and integration

testing without revealing such bugs.

18

 Many of them depend on load, and their

symptoms emerge only when the system

is stressed.

 Sample for such bugs: Assumption that

there will be no interrupts, Failure to

block or un block interrupts,

Assumption that memory and registers

were initialized or not initialized etc

 Careful integration of modules and

subjecting the final system to a stress

test are effective methods for these bugs.
6. Control and Sequence Bugs (Systems Level):

 These bugs include: Ignored timing,

Assuming that events occur in a

specified sequence, Working on data

before all the data have arrived from

disc, Waiting for an impossible

combination of prerequisites, Missing,

wrong, redundant or superfluous process

steps.

 The remedy for these bugs is highly

structured sequence control.

 Specialize, internal, sequence control

mechanisms are helpful.
7. Resource Management Problems:

 Memory is subdivided into dynamically

allocated resources such as buffer

blocks, queue blocks, task control

blocks, and overlay buffers.

 External mass storage units such as
discs, are subdivided into memory
resource pools.

 Some resource management and usage

bugs: Required resource not obtained,

Wrong resource used, Resource is

already in use, Resource dead lock etc

 Resource Management Remedies: A

design remedy that prevents bugs is

always preferable to a test method that

discovers them.

 The design remedy in resource

management is to keep the resource

structure simple: the fewest different

kinds of resources, the fewest pools, and

no private resource management.
8. Integration Bugs:

 Integration bugs are bugs having to do

with the integration of, and with the

interfaces between, working and tested

components.

 These bugs results from inconsistencies

or incompatibilities between

components.

 The communication methods include
data structures, call sequences, registers,

19

semaphores, communication links and
protocols results in integration bugs.

 The integration bugs do not constitute a

big bug category(9%) they are

expensive category because they are

usually caught late in the game and

because they force changes in several

components and/or data structures.
9. System Bugs:

 System bugs covering all kinds of bugs

that cannot be ascribed to a component

or to their simple interactions, but result

from the totality of interactions between

many components such as programs,

data, hardware, and the operating

systems.

 There can be no meaningful system

testing until there has been thorough

component and integration testing.

 System bugs are infrequent(1.7%) but

very important because they are often

found only after the system has been

fielded.

TEST AND TEST DESIGN BUGS:

 Testing: testers have no immunity to bugs. Tests

require complicated scenarios and databases.

 They require code or the equivalent to execute and

consequently they can have bugs.

 Test criteria: if the specification is correct, it is

correctly interpreted and implemented, and a

proper test has been designed; but the criterion by

which the software's behavior is judged may be

incorrect or impossible. So, a proper test criteria

has to be designed. The more complicated the

criteria, the likelier they are to have bugs.

Remedies: The remedies of test bugs are:

1. Test Debugging: The first remedy for

test bugs is testing and debugging the

tests. Test debugging, when compared to

program debugging, is easier because

tests, when properly designed are

simpler than programs and donot have to

make concessions to efficiency.

20

2. Test Quality Assurance: Programmers

have the right to ask how quality in

independent testing is monitored.

3. Test Execution Automation: The

history of software bug removal and

prevention is indistinguishable from the

history of programming automation aids.

Assemblers, loaders, compilers are

developed to reduce the incidence of

programming and operation errors. Test

execution bugs are virtually eliminated

by various test execution automation

tools.

4. Test Design Automation: Just as much

of software development has been

automated, much test design can be and

has been automated. For a given

productivity rate, automation reduces

the bug count - be it for software or be it

for tests.

The Nightmare List and When to stop Testing :

1.List your worst software nightmares. State them in terms of

the symptoms they produce and see how your user will react

to those symptoms.

2.Convert the consequences of each nightmare into a cost.

Usually this is a labor cost for correcting the nightmare.

3.Order the list from the costliest to the cheapest and then

discard the low-concern nightmares

21

4.Based on your experience, measured
data and statistics postulate the bugs that
are likely to create the symptoms
expressed by each nightmare.

5.For each nightmare you’ve developed a
list of possible causative bugs, order that
list by decreasing probability.

6.Rank the bug types in order of
decreasing importance to you.

7.Design tests(based on your knowledge of test
techniques) and design your quality assurance
inspection process using the methods that are
most effective against the most important bugs

8.If a test is passed, then some nightmares or parts
of them go away. If test is failed, then nightmare is
possible, but upon correcting bug, it too goes away

9.Stop testing when probability of all nightmares
has been shown to be inconsequential

